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processor. This problem of geometric optics can be r
We present three novel forms of the Monge–Ampère equation, which is used, e.g., in image
processing and in reconstruction of mass transportation in the primordial Universe. The
central role in this paper is played by our Fourier integral form, for which we establish pos-
itivity and sharp bound properties of the kernels. This is the basis for the development of a
new method for solving numerically the space-periodic Monge–Ampère problem in an
odd-dimensional space. Convergence is illustrated for a test problem of cosmological type,
in which a Gaussian distribution of matter is assumed in each localised object, and the
right-hand side of the Monge–Ampère equation is a sum of such distributions.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The Monge–Ampère equation (MAE)
det kuxixj
k ¼ f ðxÞ; ð1Þ
is encountered in many areas of numerical analysis and physics, ranging from image processing [1–3] to cosmology [4–6].
Here the subscripts xi denote derivatives in the respective spatial variables; kuxi ;xj

k is the Hessian of u, i.e., the matrix com-
prised of second derivatives of u. Existence and regularity of its solutions was considered in [7–9]. Various strategies were
proposed for its numerical solution. A provably convergent method for solving the Dirichlet problem for the two-dimen-
sional MAE in bounded convex domains was presented in Oliker and Prussner [10]. It is directly linked to the geometric
interpretation of the equation that had given an opportunity to demonstrate existence of weak solutions [13]. However,
the actual numerical examples in Oliker and Prussner [10] have just up to 25 grid points, which is clearly insufficient to
establish the practical feasibility of the method.1 The MAE can be recast as a minimisation problem; application of algorithms
for saddle-point optimisation to a two-dimensional MAE was considered in [14,15], and least-squares minimisation was advo-
cated in Dean and Glowinski [16]. Efficient methods for solution of the discrete optimal transportation problem were developed
for application to cosmological problems [4–6]. It may be perceived that discrete methods correspond well to the physics of
mass transportation in the Universe – after all, galaxies, as observed by astronomers, are clearly well-localised, discrete objects!
This argument, however, becomes less persuading, when one recalls that visible matter constitutes only a very small fraction of
different, ‘‘dark’’ kinds of matter, whose density distribution is supposed to be continuous (as opposed to a nearly discrete dis-
tribution in clusters of the visible matter).
. All rights reserved.
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In another group of methods the MAE is treated as a generic nonlinear partial differential equation. Application of Galer-
kin’s and finite element methods to a regularised MAE was considered in Feng and Neilan [17,18]. A pseudospectral New-
ton’s algorithm was reported to perform well for a MAE in R2 with a smooth r.h.s. [19]. However, when we implemented
this algorithm for a three-dimensional MAE, we found that it failed to converge, unless the r.h.s. was a smooth slowly varying
function. This is consistent with the observation [10] that Newton’s method, applied to equations equivalent to the MAE, is
useful to improve an approximate solution only if the approximation is accurate enough, and easily fails otherwise. Two
methods for numerical solution of a Dirichlet problem for an elliptic MAE in a two-dimensional convex region X are exam-
ined in [20]. The first one employs a finite-difference discretisation of the equation; it is advocated for application to the MAE
with a possibly singular solution. The second one is an iterative method for the MAE in the form of a fixed point problem
u ¼ r�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

x1x1
þ u2

x2x2
þ 2u2

x1x2
þ 2f

q
;

(here r�2 denotes the inverse Laplacian); it is claimed to perform better, when the solution is regular (i.e., belongs to the
Sobolev space W2

2ðXÞ).
A so-called ‘‘inexact’’ iterative Newton–Krylov solver with preconditioning was applied for two- [21] and three-dimen-

sional [22] grid generation with the properties of equidistribution and minimum distortion. The nature of the problem
solved in Delzanno et al. and Finn et al. [21,22] required only a modest accuracy of solutions, discrepancies the order of
10�3 to 10�4 being acceptable. Examples of computations of such moderately accurate solutions illustrating the scalability
of the algorithm with respect to the employed spatial resolution were provided ibid.

In Sections 2–4 we derive three alternative forms of (1): the ‘‘second-order divergence’’ form, the Fourier integral form
and the ‘‘convolution’’ form, which, to the best of our knowledge, were never presented in the literature before. The second
form suggests two related methods for computation of space-periodic solutions to (1). The methods and results of their test
applications are presented in Section 6; the Monge–Ampère problem of the cosmological type, which we use to test our
algorithms, is presented in Section 5, after a short statement of the cosmological reconstruction problem. In the Concluding
remarks we briefly discuss some open questions.

We note that the MAE’s of various kinds are considered in the literature. For the MAE arising in the mass transportation
problem, typically the r.h.s. of (1) depends on the gradient of the unknown function (this form of the equation can be found
in the original memoir by Ampère [24]). In the theory of PDE’s, usually one considers the MAE with a known r.h.s. (see
[9,23]). The MAE of this kind arises in the reconstruction of the early Universe (see discussion at the beginning of Section
5). Since this cosmological problem is the main original motivation for our work, we restrict our discussion to the case of
the ‘‘mathematician’s’’ MAE. However, a straightforward reformulation of our algorithms makes them applicable for the case
of the r.h.s. depending on the unknown function.
2. The ‘‘second-order divergence’’ form of the MAE

The divergence form of the MAE (1), in which the l.h.s. of the equation is represented as a sum of the first derivatives of
certain quantities, is well known (see, e.g., [17]). In this section we derive a representation of the l.h.s. of the MAE as a sum of
second derivatives, which we call the second-order divergence form of the MAE.

Consider a Fourier integral solution
u ¼
Z

RN
~uðxÞeix�x dx;
to the MAE in RN . Substituting the integral into (1) and using the identity for N � N matrices
det kaijk ¼
1
N!

X
i1 ;...;iN ;j1 ;...;jN

ei1 ...iN ej1 ...jN

YN

n¼1

ainjn ;
where each of the indices i1; . . . ; iN; j1; . . . ; jN takes the values 1; . . . ;N and ep1 ...pN
denotes the unit antisymmetric tensor of rank

N, we find
det kuxixj
k ¼ ð�1ÞN

N!

X
i1 ;...;iN ;j1 ;...;jN

ei1 ...iN ej1 ...jN

YN
n¼1

Z
RN

~uðxÞxinxjn eix�x dx

¼ ð�1ÞN

N!

Z
RN

. . .

Z
RN

X
i1 ;...;iN

ei1 ...iN

YN

n¼1

xn
in

 ! X
j1 ;...;jN

ej1 ...jN

YN

n¼1

xn
jn

 ! YN
n¼1

~uðxnÞ
 !

� exp i
XN

n¼1

xn � x
 !

dx1 . . . dxN

¼ ð�1ÞN

N!

Z
RN

. . .

Z
RN

det2 x1; . . . ;xN�1;x�
XN�1

n¼1

xn

�����
������

YN�1

n¼1

~uðxnÞ
 !

~u x�
XN�1

n¼1

xn

 !
eix�xdx1 . . . dxN�1dx ð2Þ

¼ ð�1ÞN

N!

Z
RN

. . .

Z
RN

det2kx1; . . . ;xN�1;xk
YN�1

n¼1

~uðxnÞ
 !

~u x�
XN�1

n¼1

xn

 !
eix�xdx1 . . . dxN�1dx: ð3Þ
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Here kx1; . . . ;xNk denotes a N � N matrix comprised of N columnar vectors x1; . . . ;xN . The first factor in the integrand of
(3) is a quadratic function of x, hinting that the l.h.s. of (1) can be transformed into a sum of second derivatives. Indeed,
‘‘reverse engineering’’ of (3) reveals an alternative, ‘‘second-order divergence’’ form of (1) in RN:
1
N!

X
i1 ;...;iN ;j1 ;...;jN

ei1 ...iN ej1 ...jN ðuxi1
xj1

. . . uxiN�1
xjN�1

uÞxiN
xjN
¼ f : ð4Þ
Equivalence of (1) and (4) is now easily established directly: Using the standard rule for differentiation of the products in
the l.h.s. of (4), we render it as a sum of products of derivatives of u. Third-order derivatives enter such a product only in pairs
of the form uxip xiN

xjp
uxiq xjN

xiq
, and hence all products involving third-order derivatives cancel out due to antisymmetry of the

tensors ei1 ...iN . Similarly, all terms involving fourth-order derivatives cancel out. Consequently, each term in the l.h.s. of (4)
gives rise to a single term ei1 ...iN ej1 ...jN uxi1

xj1
. . . uxiN

xjN
, and hence the sum is the determinant of the Hessian of u, as required.

This form has an interesting consequence. Suppose, for the sake of simplicity, that a space-periodic solution u 2 TN is
sought. Let u be a smooth function with a finite support (in this context such u are called test functions). Multiplying
the MAE by u and twice integrating by parts each term in the sum, we obtain by virtue of (4)
1
N!

X
i1 ;...;iN ;j1 ;...;jN

ei1 ...iN ej1 ...jN

Z
RN

uxi1
xj1

. . . uxiN�1
xjN�1

uuxiN
xjN

dx ¼
Z

R3
fudx: ð5Þ
As usual in the theory of partial differential equations, a weak solution to (1), u, can be defined as a function satisfying the
integral identity (5) for any test function u. (Other definitions of weak solutions to the MAE are natural: generalised solu-
tions obtained by geometric constructions [13] and the so-called viscosity solutions [9]; the two definitions are equivalent
[23].) Commonly (e.g., see [17,25]), only one integration by parts is performed in this integral identity. Our form is advan-
tageous in that a lesser regularity of the weak solution is required for (5) to be well-defined. The following argument illus-
trates this for N > 2: For any u from the Sobolev space W2

N�1ðT
NÞ the integrals in the l.h.s. of (5) are well-defined (because by

the Sobolev embedding theorem this implies ru 2 L2ðN�1ÞðTNÞ and hence u 2 L1ðTNÞ). By contrast, integrals in the similar
identity obtained by just a single integration by parts are not well-defined for u 2W2

N�1ðT
NÞ. (Note that a viscosity solution

for fully nonlinear second-order equations is only required to be continuous [9].)

3. The Fourier integral form of the MAE; positivity and bounds of kernels

3.1. Derivation

In the Monge–Ampère–Kantorovich approach to the cosmological reconstruction problems [4,5], the MAE arises for the
potential of the inverse Lagrangian map, in which the function f is a ratio between matter density at the current epoch and at
the much earlier epoch of matter-radiation decoupling (at the earlier epoch, the distribution is very close to uniform); thus,
f > 0.

Here, we consider a problem in which the spatial mean of f is positive. Note that for odd N, if hf i < 0, the change of the
unknown function u! �u reverses the sign of f and hf i admits the desirable sign (here h�i denotes space averaging:
hf i � lim
R!1

1
jBRj

Z
BR

f ðxÞdx; ð6Þ
and jBRj is the volume of the ball BR � RN of radius R). Suppose that u and f have the same spatial periodicity; integration of
(4) over a periodicity cell TN then yields
Z

TN
f dx ¼ 0;
which is incompatible with hf i– 0. Thus we assume henceforth
u ¼ c
jxj2

2
þ u0

 !
; ð7Þ
where u0 has the periodicity of f and a zero spatial mean (this being just a normalisation), and c is a constant. Substitution of
(7) into (1) and integration over a periodicity cell yields
cN ¼ hf i: ð8Þ
To derive this, note that uxixj
¼ c dij þ u0xixj

� �
, where dij is the Kronecker symbol, and hence the derivatives of u0 in the l.h.s.

of (1) are present only in det ku0xixj
k and a linear combination of minors of smaller sizes of the Hessian of u0. By the algebraic

transformation presented in the previous section each such minor can be converted into a sum of second derivatives of prod-
ucts of u0 with its second derivatives. Thus the spatial mean of the l.h.s. of (1) over any periodicity cell, and hence the mean
defined by (6), does not involve u0 and is equal to cN .
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In a more general formulation, we seek a solution (7) satisfying (8) and hu0i ¼ 0, assuming that f and u0 can be represented
as Fourier integrals:
r2u0 ¼
Z

RN
~gðxÞeix�x dx; u0 ¼

Z
RN

~u0ðxÞeix�x dx; where ~u0ðxÞ ¼ �~gðxÞ=jxj2;

f=cN ¼
Z

RN

~f ðxÞeix�x dx:
(If the problem, defined by (1), (7) and (8), is considered for space-periodic f and u0, integrals in wave vectors in what fol-
lows are replaced by the respective Fourier sums.)

Eq. (2) is equivalent to
det ku0xixj
k ¼ 1

N!

Z
RN

. . .

Z
RN

det2 ix1 ; . . . ; ixN�1 ; i
x�
PN�1

n¼1

xn

�������
��������

YN�1

n¼1

~gðxnÞ
 !

~g x�
XN�1

n¼1

xn

 !
eix�x dx1 . . . dxN�1dx;
where ia denotes a unit vector in the direction of a. Our immediate goal is to derive a similar expression for the terms in (1) of
lower orders in u0. The term of order m is
ð�1Þm

N!

X
i1 ;...;iN ;j1 ;...;jN

ei1 ...iN ej1 ...jN

X
jrj¼m

Y
n:in ;jn2r

Z
RN

~u0ðxÞxinxjn eix�x dx

 ! Y
n:inorjn2=r

dinjn
(here the sum
P
jrj¼m is over all subsets r � f1; . . . ;Ng of cardinality m)
¼ ð�1Þm

m!

X
16p1<...<pN�m6N

Z
RN

. . .

Z
RN

X
j1 ;...;jm

ej1 ...jmp1 ...pN�m

Ym
n¼1

xn
jn

 !2

�
Ym
n¼1

~u0ðxnÞ
 !

exp i
Xm

n¼1

xn � x
 !

dx1 . . . dxm

¼
Z

RN
. . .

Z
RN

Am ix1 ; . . . ; ixm�1 ; i
x�
Pm�1

n¼1

xn

0
B@

1
CA� Ym�1

n¼1

~gðxnÞ
 !

~g x�
Xm�1

n¼1

xn

 !
eix�x dx1 . . . dxm�1dx; ð9Þ
where
Amði1
; . . . ; imÞ � 1

m!

X
16p1<...<pN�m6N

M2
p1 ...pN�m

ði1
; . . . ; imÞ; ð10Þ
is the sum of squares of all minors of rank m,
Mp1 ...pN�m
ði1
; . . . ; imÞ �

X
j1 ;...;jm

ej1 ...jmp1 ...pN�m
ði1Þj1 . . . ðimÞjm ;
obtained by crossing out rows of numbers p1 < � � � < pN�m from the N �m matrix
Mm � ki1
; . . . ; imk;
comprised of m columnar vectors i1
; . . . ; im.

Therefore, the problem (1) is reduced after the substitution (7) to the system of integral equations, which we call the Fou-
rier integral form of the problem (1) and (7):
~gðxÞ þ
XN

m¼2

Z
RN

. . .

Z
RN

Am ix1 ; . . . ; ixm�1 ; i
x�
Pm�1

n¼1

xn

0
B@

1
CA� Ym�1

n¼1

~gðxnÞ
 !

~g x�
Xm�1

n¼1

xn

 !
dx1 . . . dxm�1 ¼ ~f ðxÞ; ð11Þ
which is now stated in terms of the Fourier coefficients ~gðxÞ of the Laplacian of the unknown function u0. Eqs. (11) are valid
for all x – 0; the respective equation for x ¼ 0 is (8).

If the r.h.s. of (1) is zero-mean ðhf i ¼ 0Þ, the MAE admits the Fourier integral form (11) (where ~gðxÞ are now the Fourier
coefficients of r2u), where the l.h.s. is reduced to a single term for m ¼ N in the sum

PN
m¼2.

3.2. Bounds for the kernels Am in the Fourier integral form

In this subsection we establish bounds
0 6 Amði1
; . . . ; imÞ 6 1

m!
; ð12Þ
provided all vectors is have a unit norm. These bounds will play a crucial rôle for our numerical algorithm.
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Addition to a column is of any linear combination of columns is0 for s0 < s does not change the value of any minor
Mp1 ...pN�m

ði1
; . . . ; imÞ. Using the Gram–Schmidt orthogonalisation process, we change all is in Mm to js such that (i) j1 ¼ i1,

(ii) for any s, js differs from is by a linear combination of vectors is0 for s0 < s and thus Am remains unaltered, (iii) for any
s; js is orthogonal to all js0 for s0 < s. Hence
js ¼ ijs sin hs;
where hs is the angle between is and the subspace spanned by fis0 js0 < sg. Consequently,
Amði1
; . . . ; imÞ ¼ Amð j1

; . . . ; jmÞ
Ym
s¼2

sin2 hs:
We denote M0
m � kj

1
; . . . ; jmk and tM0

m the transpose of M0
m. The identity [26]
X

16p1<...<pN�m6N

M2
p1 ...pN�m

ðj1
; . . . ; jmÞ ¼ det tM0

mM
0
m

� �
; ð13Þ
(which does not require orthogonality of fj1
; . . . ; jmg) can be easily proved using the formula
det kaijk ¼
X

j1 ;...;jm

ej1 ...jm

Ym
i¼1

aiji :
We enlarge the set fj1
; . . . ; jmg by vectors js for s > m to a complete orthonormal basis in RN . Let U be an orthogonal matrix

comprised of the N columnar vectors j1
; . . . ; jN , and E be the N �m matrix, whose all entries are 0 except for Ess ¼ 1 for all

1 6 s 6 m. Then M0
m ¼ UE and hence
det tM0
mM

0
m

� �
¼ detðtEtUUEÞ ¼ detðtEEÞ ¼ det Im ¼ 1;
where Im is the identity matrix of size m. Consequently,
Amði1
; . . . ; imÞ ¼ 1

m!

Ym
s¼2

sin2 hs:
This demonstrates that (12) are sharp bounds.

3.3. Solution of the MAE for a weakly fluctuating r.h.s.

If the fluctuating part of the r.h.s. in (1), f � hf i, is small relative the mean hf i, (11) suggests that ~gðxÞ � ~f ðxÞ and the non-
linear terms in (11) are small. Then the system can be solved by iteration:
~gKþ1ðxÞ ¼ ~f ðxÞ �
XN

m¼2

Z
RN

. . .

Z
RN

Am ix1 ; . . . ; ixm�1 ; i
x�
Pm�1

n¼1

xn

0
B@

1
CA� Ym�1

n¼1

~gKðxnÞ
 !

~gK x�
Xm�1

n¼1

xn

 !
dx1 . . . dxm�1: ð14Þ
Theorem 1

(1) Suppose positive constants C0 and C1 satisfy the inequality
XN

m¼2

ðC0 þ C1Þm

m!
6 C1; ð15Þ

Z
RN
j~f ðxÞjdx 6 C0; ð16Þ

and ~g0 satisfies the inequalityZ
RN
j~gKðxÞ � ~f ðxÞjdx 6 C1; ð17Þ

for K ¼ 0. Then iterates (14) are globally bounded: (17) holds true for all K > 0.

(2) Under the same conditions, the following inequalities are satisfied for all K > 0:

Z
RN
j~gKþ1ðxÞ � ~gKðxÞjdx 6 C2

Z
RN
j~gKðxÞ � ~gK�1ðxÞjdx; ð18Þ

max
x2RN

j~gKþ1ðxÞ � ~gKðxÞj 6 C2 max
x2RN

j~gKðxÞ � ~gK�1ðxÞj; ð19Þ
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where it is denoted

C2 �
XN�1

m¼1

ðC0 þ C1Þm

m!
:

Furthermore, if
C2 < 1; ð20Þ
then iterations (14) converge to a solution to (11), which is unique in the ball (17).
The proof is elementary: Inequalities (17)–(19) stem from the bounds (12). By the contraction mapping principle, inequal-

ities (18)–(20) imply convergence of iterations (14) in the norms of L1ðRNÞ and CðRNÞ in the space of Fourier coefficients,
yielding a solution satisfying (17).

Evidently, Eqs. (15) and (20), where equality is assumed instead of the inequalities, have positive solutions for any N. (For
instance, C0 ¼

ffiffiffi
3
p
� 4=3;C1 ¼ 1=3 for N ¼ 3.) If for the chosen values of C0 and C1 (15) holds true, C2 ¼ 1 and the inequality

(16) is strict, then all conditions of the Theorem become satisfied for a slightly smaller value of C0.
Note that in view of (20) C0 < 1 and hence (16) implies f > 0 everywhere. Consequently, our Theorem is mostly of interest

as a statement about convergence of iterations (14). Existence of weak solutions was proved by geometric methods in
Pogorelov [13] for the MAE with an arbitrary positive r.h.s. in a compact convex domain. Although our Theorem is signifi-
cantly weaker because of the strong restrictions on the r.h.s., we have proved it for a non-compact domain – the entire space.
4. The ‘‘convolution’’ form of the MAE

Following the same algebraic ideas, the MAE can be partially ‘‘integrated’’. We again use the Fourier transform of u0:
u0 ¼
Z

RN
~u0ðxÞeix�x dx; where ~u0ðxÞ ¼ ð2pÞ�N

Z
RN

u0ðxÞe�ix�x dx:
Let
~nðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~uðxÞ=ð2pÞN

q
;

where
argð~nðxÞÞ ¼ argð~u0ðxÞÞ=2; if j argð~u0ðxÞÞj < p;

argð~nðxÞÞ ¼ � argð~nð�xÞÞ; if argð~u0ðxÞÞ ¼ p:
That these conditions can be enforced, is elementary for x – 0; the case x ¼ 0 is not problematic, because ~nð0Þ ¼ 0. Then
nðxÞ �
Z

RN

~nðxÞeix�x dx;
is a real-valued function. (For a given u0 it is not uniquely defined.)
Let us render the term of order m in u0 in the l.h.s. of (1) in the terms of nðxÞ employing the expression (9), (10), (13) and

the ‘‘identity’’
ð2pÞ�N
Z

RN
eix�x dx ¼ dðxÞ;
(as usual understood in the sense of generalised functions):
Z
RN

. . .

Z
RN

Am ix1 ; . . . ; ixm�1 ; i
x�
Pm�1

n¼1

xn

0
B@

1
CA� Ym�1

n¼1

~gðxnÞ
 !

~g x�
Xm�1

n¼1

xn

 !
eix�x dx1 . . . dxm�1dx

¼ ð�1Þm
Z

RN
. . .

Z
RN

Am x1; . . . ;xm
� � Ym

n¼1

~u0ðxnÞ
 !

exp i
Xm

n¼1

xn � x
 !

dx1 . . . dxm

¼ ð�ð2pÞNÞm
Z

RN
. . .

Z
RN

Amð~nðx1Þx1; . . . ; ~nðxmÞxmÞ exp i
Xm

n¼1

xn � x
 !

dx1 . . . dxm

¼ ð2pÞ�Nm
Z

RN
. . .

Z
RN

Am

Z
RN
rnðxÞe�ix1 �x1

dx1; . . . ;

Z
RN
rnðxÞe�ixm �xm

dxm

� 	
� exp i

Xm

n¼1

xn � x
 !

dx1 . . . dxm

¼ 1
m!

Z
RN

. . .

Z
RN

detðtkrnðx1Þ; . . . ;rnðxmÞkkrnðx� x1Þ; . . . ;rnðx� xmÞkÞdx1 . . . dxm:
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In particular, the linear term ðm ¼ 1Þ is r2u0 ¼
R

RN rnðx1Þ � rnðx� x1Þdx1.
Therefore, the problem (1) is equivalent, after the substitution (7) and (8), to
1þ
XN

m¼1

1
m!

Z
RN

. . .

Z
RN

detðtkrnðx1Þ; . . . ;rnðxmÞkkrnðx� x1Þ; . . . ;rnðx� xmÞkÞdx1 . . . dxm ¼ f
cN
: ð21Þ
We call this integral equation the ‘‘convolution’’ form of the MAE. Since it does not involve second-order derivatives, it may
prove useful for development of an iterative algorithm for numerical solution of the problem defined by (1), (7) and (8),
which involves suitable transformations of the spatial variable.

If the r.h.s. of (1) is zero-mean, the MAE also admits the convolution form (11), where c ¼ 1, the l.h.s. is reduced to a single
term for m ¼ N in the sum

PN
m¼1, and ~u0ðxÞ in the definition of ~nðxÞ denotes the Fourier transform of u.
5. A test problem with a cosmological flavour

One important area of application of the MAE is the reconstruction of the dynamical history of the Universe from
present observations of the spatial distribution of masses (galaxies, clusters, including their dark-matter components).
Let us briefly recall the background. Peebles was the first to propose that, from the sole knowledge of the current posi-
tions of galaxies (from the Local Group which includes our own galaxy) without knowledge of their (proper) velocities,
reconstruction of the full dynamical history is a meaningful goal [27]. Indeed, the very strong constraint on the distri-
bution of masses at the epoch of decoupling – which has to be almost uniform – makes reconstruction a possibly well-
posed two-point boundary problem that can then be solved by variational techniques. In fact, using convexity tech-
niques, a theorem of uniqueness of reconstruction was proved in Brenier et al. [5], using the Euler–Poisson equations,
which describes the dynamics of matter on sufficiently large scales (of the order of a few million light years). In prac-
tice, reconstruction on such scales was done so far via the Monge–Ampère–Kantorovich (MAK) method [4] (see also
[5,6]) which assumes that the Lagrangian map from initial to current mass locations is the gradient of a convex poten-
tial. This holds exactly for the Zel’dovich approximation [28] (in which the equation for the velocity of matter reduces
to the inviscid Burgers equation with a zero r.h.s., and hence the peculiar velocities remain constant along trajectories
of point masses) and also for its refinement, the first-order Lagrangian perturbation approximation [29]. It is then easy,
using mass conservation, to derive a MAE for the potential of the inverse Lagrangian map (the latter is the Legendre–
Fenchel transform of the potential of the direct map). By a theorem of Brenier [30] the MAE becomes a Monge–Kant-
orovich mass transportation problem with quadratic cost which, after discretisation, can be solved by optimisation tech-
niques (see [5] for details). The r.h.s. of the MAE is equal to the ratio of densities at the present and initial positions.
Thus, if the initial density was not uniformly distributed, we would have to solve the MAE with the r.h.s. depending on
the gradient of the unknown potential. However, at the epoch of decoupling (about 380 thousand years after the Big
Bang) the density of matter was close to uniform, which implies a significant simplification of the MAE to be solved: its
r.h.s. is known.

Here we explore for the first time the possibility of directly solving the three-dimensional MAE without discretisation on
a toy model with a cosmological flavour.

We assume that the dimension of space is N ¼ 3, and the r.h.s. of the MAE has the following structure:
f ¼ d�3
XG

g¼1

f ðgÞ
r� rðgÞ

d

� 	
: ð22Þ
The function (22) describes mass distribution for G ‘‘objects’’, which are ‘‘localised’’, if the value of the parameter d is small
compared to the distance between objects. In the cosmological context galaxies or clusters of galaxies can be regarded as
such objects; then f ðgÞ describes the total distribution of mass of both visible matter and dark matter, in which the galaxies
are embedded. Although observations attest, that the distribution of visible matter in galaxies is clearly discontinuous, it is
astrophysically sound to expect that the distribution of all types of matter is smooth due to the prevailing smoothness of the
dark matter. We assume that objects have density distributions with a Gaussian shape:
f ðgÞðrÞ ¼ mðgÞ

ðrðgÞ
ffiffiffiffi
p
p
Þ3

expð�jr=rðgÞj2Þ: ð23Þ
The g-th object of mass mðgÞ > 0 is located at rðgÞ. All mðgÞ;rðgÞ and rðgÞ are independent of the small parameter d > 0.
We will be seeking a solution (7) with a space-periodic u0 to the Monge–Ampère problem (1), where a space-periodic r.h.s.

f̂ is the sum of ‘‘clones’’ of (22) over all periodicity cells. Without loss of generality we can assume that the total mass is
normalised:
Z

f ðrÞdr ¼
XG

g¼1

mðgÞ ¼ 1;
thus (8) implies c ¼ 1 in (7).
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It is instructive to consider particular solutions to this Monge–Ampère problem.

5.1. An exact solution to the MAE for a spherically symmetric mass distribution

In spherical coordinates centred at rðgÞ, (1) becomes, for spherically symmetric u and f,
q�2 @
2u
@q2

@u
@q

� 	2

¼ d�3f ;
where q ¼ jr� rðgÞj. This equation has an obvious solution
uðq; dÞ ¼
Z q

0
3
Z r0=d

0
r2f ðrÞdr

 !1=3

dr0; ð24Þ
whose first derivatives are uniformly bounded:
@u
@xi
¼ xi

q
3
Z q=d

0
r2f ðrÞdr

� 	1=3

¼ Oðd0Þ;
the second derivatives are Oðd�1Þ:
@2u
@xi@xm

¼ d�1 xixm

q2

q
d

� �2
f

q
d

� �
3
Z q=d

0
r2f ðrÞdr

� 	�2=3

þ di
m �

xixm

q2

� 	
1
q

3
Z q=d

0
r2f ðrÞdr

� 	1=3

:

This estimate follows from the following inequalities:

� jxixm=q2j 6 1;
� for q < d; f ðq=dÞ is uniformly bounded and
cðq=dÞ3 6
Z q=d

0
r2f ðrÞdr 6 �cðq=dÞ3;
for some positive constant c and �c;
� for q P d; ðq=dÞ2f ðq=dÞ is uniformly bounded and
0 < c0 6
Z q=d

0
r2f ðrÞdr 6 �c0;
for some constant c0 and �c0.
Moreover, if q is larger than a positive constant, f ðq=dÞ ¼ oðd3Þ, and hence all second derivatives of u are uniformly
bounded outside any sphere of a fixed radius.

The properties of the solution discussed in this subsection are implied just by a fast decay of f at infinity and the spherical
symmetry of the r.h.s.; the assumption that the profile is Gaussian is unnecessary.

5.2. A one-cell solution for G > 1 spherically symmetric localised objects

A solution for G > 1 objects can be expected to admit a power series expansion
uðrÞ ¼
X
n¼0

unðr; dÞdn;
where (by analogy with (24)) each unðr; dÞ and its first derivatives are Oðd0Þ, and the second derivatives are Oðd�1Þ.
Naively one could expect interaction of localised objects to be asymptotically unimportant, and hence to obtain in the

leading order the sum of individual one-object solutions:
u0ðrÞ ¼
X
g¼0

uðgÞðjr� rðgÞj; dÞ: ð25Þ
Here uðgÞðjr� rðgÞj; dÞ is the one-object solution (24) for the g-th object. Let us inspect, to what extent such a conjecture
might be true.

Consider a neighbourhood of an object c. In the leading order, the l.h.s. of (1) is det ku0 xixj
k. Substitution of (25) into the

determinant yields a sum of triple products of second derivatives of various uðgÞ. As shown in the previous subsection, for
g – c each second derivative of uðgÞ is Oðd0Þ in this neighbourhood (the distance between the objects g and c is a fixed positive
constant). Thus, only triple products of second derivatives of uðcÞ contribute terms of the leading order, Oðd�3Þ, the one of the
l.h.s. These products constitute det kuðcÞxixj

k and thus match the term d�3f ðcÞ in the r.h.s. Nonlinear interaction of pairs of solu-
tions for individual objects is at a lower order, Oðd�2Þ, and that of triplets of one-object solutions – still weaker, Oðd�1Þ. Hence,
after the finite sum (24) is substituted into the MAE, the highest order terms do cancel out, and in this respect the naive con-
jecture is confirmed.
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Nevertheless, the one-cell solution (25) does not represent the leading order term of the solution to the problem at hand.
To see this, note that at large distances (25) exhibits a linear growth in jrj, and not a quadratic one, as the form of the solution
(7) requires. Furthermore, after subtraction of the quadratic profile cjrj2, the remaining part u0 must be space-periodic, which
is clearly not the case for (25). We cannot use (25) to construct a global solution conformant with this periodicity require-
ment by the procedure, used to obtain the periodic r.h.s. f̂ from the individual density profiles (22), because the sum of peri-
odically distributed ‘‘clones’’ of one-cell solutions (25) is infinite. Moreover, for such hypothetical space-periodic sum there
would be infinitely many pairwise interactions between objects yielding products of the order Oðd�2Þ; hence, even if the sum
of such products is finite, it will not necessarily remain Oðd�2Þ.

We observe that the pairwise interaction does not become weaker when the distance between the interacting objects
grows. Thus, even in the high-contrast limit the solution that we are seeking does not reduce to individual interactions
between objects; their interaction is essentially collective, which makes it hard to predict the structure of the
solution.

6. Computation of a solution to the MAE with a space-periodic r.h.s.

In this section we present two iterative algorithms for numerical solution of the space-periodic Monge–Ampère prob-
lem. One version (AICDM), employing numerical improvement of convexity and discrepancy minimisation stabilising the
iterative process, is suitable for computation of solutions for everywhere positive right-hand sides f (see Subsection 6.4).
Another one (ACPDM), involving continuation in parameter and discrepancy minimisation, does not require this condi-
tion to be satisfied (see Subsection 6.2). They both rely on the basic algorithm for iterative solution of a fixed point prob-
lem for the MAE (see Subsection 6.1). Test applications of the two algorithms are considered in Subsections 6.3 and 6.4 .
We assume hf i– 0, however, reformulation of ACPDM for the case of a zero-mean space-periodic r.h.s. is
straightforward.

6.1. A basic solver (FPAR)

If the amplitude of fluctuation of f is small compared to the mean – more precisely, if (16) is satisfied, the Theorem (see
Section 3.3) establishes existence of a solution to (1), that is a perturbation of cjxj2=2. If, in addition, (20) holds true, the The-
orem guarantees that iterations defined by (14) converge to the Laplacian of the perturbation; this offers an algorithm for
numerical solution of the MAE. If either of the conditions (16) or (20) are violated (which is the practically interesting case),
iterations (14) do not necessarily converge. Different algorithms are necessary, taking this into account.

Suppose the kernels Am in (11) are frozen and take constant values am, respectively. Then the new system of equations
(11) can be easily solved, since it is the Fourier form of the polynomial equation
XN

m¼0

amgm ¼ f=hf i;
in the physical space. This observation suggests the following algorithm. We express (11) in the terms of g ¼ r2u0 as
XN

m¼0

amgm ¼ f=hf i þ FðgÞ; ð26Þ
where
FðgÞ � 1þ
XN

m¼1

amgm � det kr�2ðgxixj
Þ þ dijk;
and implement iterations
XN

n¼0

amgm
K ¼ f=hf i þ FðgK�1Þ; ð27Þ
in the physical space.
The applicability of this algorithm depends crucially on the choice of the coefficients am. In view of the positivity and the

bounds for the kernels (12), we impose
0 6 am 6
1

m!
for m > 0:
Furthermore, it seems practical to set
a1 ¼ 1; am ¼
1

2m!
for m > 1; ð28Þ
because for a1 ¼ 1 the linear in u0 term is treated exactly,



5052 V. Zheligovsky et al. / Journal of Computational Physics 229 (2010) 5043–5061
FðgÞ ¼
XN

m¼2

Z
RN

. . .

Z
RN

Amðix1 ; . . . ; ixm Þ � amð Þ
Ym
n¼1

~gðxnÞ
 !

exp i
Xm

n¼1

xn � x
 !

dx1 . . . dxm; ð29Þ
and the median values (28) of Am for m > 1 minimise the ranges of the kernels
Amðix1 ; . . . ; ixm Þ � am;
in (29). Since for the coefficients (28)
jAmðix1 ; . . . ; ixm Þ � amj 6 am;m P 2;
the l.h.s. of (27) ‘‘captures’’ the nonlinear behaviour of the l.h.s. of (11), the algorithm has chances to converge. However, for
the extreme values of Am the values of the kernels in (29) are as large as the respective medians, and therefore convergence of
iterations (27) and (28) is not guaranteed.

At least two strategies can be proposed for setting the value of a0 (which is a free parameter in the sense that (11) is not
required to be satisfied for x ¼ 0):

1�. At each iteration a0 is tuned, so that hgi ¼ 0 (which holds true for g ¼ r2u0).
2�. We set a0 ¼ 0.

Note that although in the subspace of space-periodic functions the inverse Laplacian is defined for zero-mean scalar fields
only, hgKi is not required to vanish, because the mean is removed by differentiation in the Hessian before the inverse Lapla-
cian is evaluated.

For any odd N, the Eq. (27) in gK with the coefficients (28) has a unique root for any r.h.s. To check this, it is enough to
establish that the derivative DNðgÞ of the l.h.s. of (27) is positive for any g. For the choice of coefficients (28),
DNðgÞ � D0NðgÞ ¼
1
2

1þ gN�1

ðN � 1Þ!

� 	
: ð30Þ
At a minimum D0NðgÞ ¼ 0 and hence (30) implies that at the minimum DN > 0, proving monotonicity of the l.h.s. of (27). It
can be shown similarly, that for any even N the number of roots is 0 or 2. Thus, the algorithm is guaranteed to be applicable
for odd N only.

It can be proved, that the Theorem also applies for iterations (27) (with the same constant C1 bounding the same norm of
solutions).

In an application to a test problem inspired by cosmology (see Section 6.3), this algorithm, which we call FPAR (Fixed Point
Algorithm for the Regular part of the MAE) produces a sequence of iterations, initially converging, but subsequently blowing
up: linear instability sets in, and hence the respective unstable mode must be removed.

6.2. A more advanced solver (ACPDM)

The behaviour of the basic algorithm FPAR suggests that it should be embedded as an engine within a more advanced
algorithm. In this subsection we present such an advanced solver, ACPDM (Algorithm with Continuation in a Parameter and
Discrepancy Minimisation).

Consider a generalisation of (26):
Qðg; pÞ ¼ 0; ð31Þ
where
Qðg; pÞ �
XN

m¼0

amgm � f=hf i � pFðgÞ:
Here the coefficients (28) are assumed, and the new parameter p is confined to the interval [0,1]. For p ¼ 0, (31) is just a
set of polynomial equations of degree N; for p ¼ 1 it reduces to (26) which is equivalent to (1). Continuation in the parameter
p is implemented: (31) is solved for a set of values pj, increasing from 0 to 1, and an initial approximation of the solution for
p ¼ pj is obtained by polynomial extrapolation of solutions for all pj0 < pj. (Numerical extrapolation requires performing qua-
druple precision computations, if the number of nodes exceeds roughly a dozen.) For any p, solution of (31) involves itera-
tions similar to (27):
XN

m¼0

amgm
K ¼ f=hf i þ pFðgK�1Þ: ð32Þ
The r.m.s. discrepancy
dðgÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðQðg; pÞ � hQðg; pÞiÞ2i

q
;
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is used in the termination condition. Note that hQðg; 1Þi ¼ 0 and hence
dðgÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdet kr�2gxixj

þ dijk � f=hf iÞ2i
q

;

for p ¼ 1; in particular, dðgÞ ¼ 0 for p ¼ 1, if and only if for u0 ¼ r�2g and the normalisation (8) the field (7) is a solution to the
MAE.

Let (�,�) denote a scalar product and k � k the induced norm of a scalar field: kvk �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv;vÞ

p
. In the test runs reported in the

next subsection, the scalar product of the functional Lebesgue space L2ðT3Þ has been assumed:
ðu;vÞ ¼
Z

T3
uðxÞvðxÞdx: ð33Þ
Other products (with different weight functions introduced in the above integral) have been also considered (see Section
6.4).

If g0 and g00 are approximate solutions to the generalised MAE (31), then
Qðg0; pÞ � Qðg00; pÞ ¼ Aðg0 � g00Þ þ Oðkg0 � g00k2Þ; ð34Þ
where A is the linearisation of (31) around the solution. Consequently, the concept of minimisation of the residual in Krylov
spaces and approaches for its realisation can be borrowed from solvers for linear problems (such as the Generalised Conju-
gate Gradients Method [31]). ACPDM involves sequences of stabilised iterations described below, which exploit this concept.
To make such an iteration, the following data is required: an approximate solution gK , and two sets of S scalar fields, vsðxÞ
and wsðxÞ; 0 6 s 6 S, where 0 6 S 6 Smax (as well as some other quantities computed at the previous stabilised iteration), and
Smax is a parameter of the algorithm. It is supposed that all vs are mutually orthogonal with respect to the scalar product (�,�),
and
vs ¼ Aws þ Oðkwsk2Þ; ð35Þ
for small ws.
A sequence of stabilised iterations of ACPDM is initialised using the current approximation g0 by computing g1 ¼ g01 as a

solution to (32) for K ¼ 1, and setting S ¼ 0 (i.e. the sets wsðxÞ and v sðxÞ are empty). For K > 1, a stabilised iteration of ACPDM
consists of the following steps:

(i) At each grid point in the physical space solve Eq. (32):
XN

m¼0

am g0K
� �m ¼ f=cN þ pFðgKÞ:
(ii) Compute Qðg0KÞ.
(iii) Orthogonalise v 0 � Qðg0KÞ � Qðg0K�1Þ to all vs;1 6 s 6 S, with respect to the scalar product (�,�), and set
vSþ1 ¼ v 0 �
XS

s¼1

ðv 0;v sÞ
ðv s; vsÞ

v s; wSþ1 ¼ g0K � g0K�1 �
XS

s¼1

ðv 0; vsÞ
ðvs;v sÞ

ws:
(iv) Compute
gKþ1 ¼ g0K �
XSþ1

s¼1

ðQðg0KÞ;v sÞ
ðvs;v sÞ

ws:
(v) If S < Smax, increase S by 1; otherwise (i.e., if S ¼ Smax), discard v1 and w1, and decrease by 1 the indices s of the remain-
ing Smax fields v s and ws.

(vi) Compute the r.h.s. of (32) for gKþ1 substituted in place of gK�1, the field QðgKþ1Þ and dðgKþ1Þ. If dðgKþ1Þ is less than a
given small threshold, then gKþ1 is the desired approximate solution and computation for the present p is finished. If
kQðgKþ1Þk > kQðgKÞk, then the current sequence is terminated.

A few comments are in order. Clearly, vSþ1 and wSþ1 obtained in step (iii), possess the required properties: vSþ1 is (�,�)-
orthogonal to all v s for s 6 S, and (35) holds for vSþ1 and wSþ1 by virtue of (34). The coefficients in the sum computed in step
iv minimise the discrepancy kQðg0K �

PS
s¼1qswsÞk, assuming all qsws are small and hence their quadratic contributions are

negligible. The minimisation plays a dual rôle: on the one hand, it stabilises basic iterations (32), removing the instability
modes as soon as they become substantial; on the other, it significantly increases the efficiency of the algorithm (up to a
factor 20 compared to other algorithms relying on iterations (32)). The assumption that nonlinear terms are small can be
incorrect; also, as a result of accumulation of the neglected nonlinear terms after a number of steps, at some stage vs can
cease to approximate Aws accurately enough. If the inequality kQðgKþ1Þk > kQðgKÞk is found to hold true in step vi, we inter-
pret this as an indication that the adverse effect of nonlinearity has become significant, and then the algorithm breaks the
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current sequence. In order to reduce the adverse influence of nonlinearity, a small number Smax may be chosen; in our runs,
Smax ¼ 5.

Now we can assemble the algorithm from the building blocks, discussed above. ACPDM performs continuation in the
parameter p. For a given p, it starts by carrying out basic iterations (32). As soon as convergence slows down (we have used
the condition d2ðgKÞ > d2ðgK�1Þ=2), the algorithm switches to perform a sequence of stabilised iterations. If the sequence ter-
minates in step vi because nonlinear effects became significant, the algorithm proceeds by performing basic iterations (32).
Usually it takes a small number of them for the instability to set in, and as soon as ACPDM detects that the inequality
d2ðgKÞ > ad2ðgK�1Þ holds true, it starts a new sequence. Here a is a parameter, which can slightly exceed 1 (in order to allow
the transients to die off and the dominant instability modes to set in, so that the latter could be efficiently removed in sub-
sequent stabilised iterations); in our test runs we have used a ¼ 1:05 .

6.3. Application to a test problem inspired by cosmology

We have chosen to employ a problem of the kind discussed in Section 5 as a test-bed for our algorithm, because cosmo-
logical applications of the MAE are probably the most important ones. The positiveness of the r.h.s. (implying convexity of
solutions [13]) is not required for application of the algorithm.

We are seeking a solution (7) with a space-periodic u0 to the Monge–Ampère problem (1), where a space-periodic r.h.s. f̂ is
a sum of ‘‘clones’’ of (22) over all periodicity cells. Our poor man’s Universe involves G ¼ 3 objects in the periodicity cell
T3ð½0;1	3Þ, centred at the origin: �1=2 6 xi 6 1=2. They are described by the following parameter values in (23):
mð1Þ : mð2Þ : mð3Þ ¼ 1
18

:
1

27
:

1
32

;

d ¼ 1; rð1Þ ¼ rð2Þ ¼ 1
6
; rð3Þ ¼ 1

8
;

rð1Þ ¼ 1
4
ð�1;1;�1Þ; rð2Þ ¼ 1

4
ð1;�1;�1Þ; rð3Þ ¼ 1

4
ð�1;�1;1Þ:

ð36Þ
Noting that f̂ ðxÞ achieves its maximum at rð3Þ and its minimum at 1
4 ð1;1;1Þ, we can estimate the contrast number of the

problem as

16

4 ð12 expð�18Þ þ 8 expð�18Þ þ 16 expð�32ÞÞ � 1:313� 107
(the factor 4 in the denominator accounts for the replicas of (23), located in the neighbour periodicity boxes at a distance
1=

ffiffiffi
2
p

).
Iterations defined by (32) have been performed on a uniform grid comprised of 643 points in the periodicity cell T3ð½0;1	3Þ.

We have evaluated det ku0xixj
þ dijk by the pseudospectral method with dealiasing (for N ¼ 3 this requires computation of the

derivatives u0xixj
in the physical space on the twice finer grid involving 1283 points). Apparently dealiasing does not play any

important rôle in these computations; this is consistent with the fast decay of the energy spectrum of g ¼ r2u0 by 11 orders
of magnitude.

We have tested both strategies for choosing a0 (see Section 6.1), as well as a hybrid strategy, in which a0 ¼ 0, but after
solving (27) we reset gK :¼ gK � hgKi. It turns out that the hybrid strategy and 1� are very close in the number of iterations
necessary to obtain a solution to the MAE to the same accuracy dðgKÞ < 10�10. However, this implies that the hybrid strategy
is several times more efficient in the terms of CPU time, since it requires just one evaluation of solutions to (27), while eval-
uation of a0 following strategy 1� requires several such evaluations. The strategy 2� has proved to be the most efficient one,
both in the terms of CPU time and the number of required iterations. (The same nodes pj were used in all the test runs.) In the
remaining part of the subsection we discuss convergence of the advanced method with a0 ¼ 0.

ACPDM performs a combination of basic iterations (32) and stabilised iterations, which have different computational
costs. The most time-consuming operation, determining the cost, is computation of the determinant of the Hessian in
FðgÞ. There are two such operations in a stabilised iteration, and a single one in a basic iteration. Consequently, the former
is approximately twice longer than the latter. To enable an accurate comparison of performance of various versions of our
code, we report the number of evaluations of determinant in each run (a run is terminated when the obtained approximate
solution g satisfies the accuracy requirement dðgÞ ¼ 10�10). Note however, that the main bulk of computations is performed
by doing stabilised iterations; the number of basic iterations is usually below 1% of the number of stabilised ones.

In all runs, the initial iteration is a solution to (31) for p ¼ 0. If ACPDM is applied to this field for p ¼ 1, iterations quickly
become chaotic and cease to converge (this has necessitated to include into the algorithm continuation in the parameter p).
Initially, ACPDM has been applied for uniformly distributed nodes pj ¼ j=J; j ¼ 0; . . . ; J � 1 for J ¼ 20, for which the algorithm
has shown a remarkably fast convergence (see Fig. 1). A polynomial 20-node extrapolation yields an approximate solution to
our test problem to the accuracy dðgÞ ¼ 0:47� 10�2 and d1ðgÞ ¼ 0:02, where
d1ðgÞ � max
T3
jdet ku0xixj

þ dijk � f̂=hf̂ ij:
When it is used as an initial approximation for a run for p ¼ 1, convergence is slow and the pattern of convergence is er-
ratic. It takes 38,685 evaluations of the determinant of the Hessian for the two discrepancy norms to decrease to 0:99� 10�9



Fig. 1. Number of evaluations of the determinant of the Hessian (vertical axis, logarithmic scale) performed by ACPDM in successive computations of
approximate solutions gðpjÞ to the generalised MAE (31), satisfying dðgðpjÞÞ < 10�10, for numerical solution of the test MAE (31) (see Section 6.3) Horizontal
axis: the index j numbering consecutive nodes pj in the mesh (37). The initial approximation for a pj is obtained by the polynomial extrapolation of solutions
for pj0 with j0 < j.
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and 0:39� 10�7, respectively. At this stage convergence stalls. We have therefore got into a local minimum of dðgÞ, out of
which no exit can be found; we will refer to it as a spurious minimum solution.

A better approximation to the solution (7) to our test problem is obtained by adding more nodes near the right endpoint
p ¼ 1. We have chosen to add J0 ¼ 13 nodes, the complete p-mesh being
pj ¼ j=J; j ¼ 0; . . . ; J � 1; pJþj�1 ¼ 1� ð2jJÞ�1
; j ¼ 1; . . . ; J0; pJþJ0 ¼ 1 ð37Þ
(information on convergence at the new nodes pJþj is also included in Fig. 1). Initial approximations at each new pJþj become
more and more accurate in the interval 0 < p 6 0:55ðj ¼ 11Þ, then the discrepancy dðgÞ of the initial approximations starts
growing and admits the maximum 0:52� 10�3 for p ¼ 0:9875ðj ¼ 21Þ, and subsequently decreases again. The rate of conver-
gence progressively falls down as pJþj approaches 1: the number of evaluations of the determinant of the Hessian yielding
solutions of the desired accuracy dðgðpJþjÞÞ < 10�10, markedly increases. However, ACPDM does not stall any more. A poly-
nomial extrapolation involving the 33 nodes delivers an approximate solution u0 for p ¼ 1 to the accuracy dðgÞ ¼ 0:78� 10�7

and d1ðgÞ ¼ 0:20� 10�5, and after further 1885 evaluations of the determinant ACPDM yields an approximate solution with
the two discrepancy norms down to 10�10 and 0:26� 10�8, respectively. In total, 9814 evaluations of the determinant of the
Hessian are involved in computations on the mesh (37) providing the solution to the MAE.

The geometry of the obtained solution – isosurfaces of u0 andr2u0 – is shown in Figs. 2 and 3, respectively. The structures
disclosed by the isosurfaces ofr2u0 (Fig. 3) are clearly associated with the three objects incorporated into the r.h.s. (22) of the
test problem. The figures also reveal a subtle interaction of the objects along the lines connecting their centres (see in Fig. 3
the tube-like structures, which connect the regions of higher values of r2u0 encompassing the centres of objects).

Figs. 4 and 5 display the structure of the fieldru0, determining the displacement of mass in the test Universe. It turns out
that u0 possesses hidden symmetries, namely, mirror reflection symmetries about any plane that is parallel to a coordinate
plane and contains a pair of objects. (Deliberately, our computations are not sped up by exploiting these symmetries.) Be-
cause of the symmetries, the component of ru0 normal to such a plane vanishes on this plane. To illustrate the behaviour
of the components of the gradient not shown in Fig. 4, we present in Fig. 5 their isolines on coordinate planes, which pass
through the centre of the periodicity cube T3ð½0;1	3Þ and hence are displaced from the planes shown in Fig. 4 by a quarter of
period.

6.4. A solver for MAE with an everywhere positive r.h.s. (AICDM)

Clearly, it is desirable to avoid the refinement of solutions for nodes 0:95 < pj < 1, which has proved necessary in appli-
cation of ACPDM to our test problem. Comparison of the spurious minimum solution, obtained with the 20 nodes pj, and the
more accurate one is instructive. The maximum discrepancy between the two approximations of g ¼ r2u0 for these solu-
tions, equal to 0.132, is attained at the minimum of the r.h.s., (1/4,1/4,1/4), and all points, where the discrepancy is larger
than 0.02 are located within the distance 1/16 from this point. The Hessian of (7) computed for the spurious minimum solu-
tion is negative at this point, i.e. this solution (7) is not a convex function, as it has to be [13]. This has suggested to develop a
modification of ACPDM, presented here, which we call AICDM (Algorithm with Improvement of Convexity and Discrepancy
Minimisation).

The algorithm proceeds as an extension of the ACPDM operating with a single node p ¼ 1; computation of a good initial
approximation by extrapolation in p is unnecessary. AICDM involves an additional procedure: improvement of convexity of
an approximate solution, which is performed once the condition d2ðgKÞ < bd2ðgK 0 Þ is satisfied. Here K is the number of the



Fig. 3. Isosurfaces of r2u0 for the solution to the test MAE at the level of 1/3 of the maximum. One periodicity cell T3ð½0;1	3Þ is shown.

Fig. 2. Isosurfaces of the solution (7) to the test MAE (presented in Section 6.3) at the levels of a half and 1=8 of the maximum. The periodicity cell T3ð½0;1	3Þ
of u0 is shown.
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current iteration, K 0 is the number of the iteration, at which the last previous improvement of convexity was performed, and
b < 1 is a constant factor (we have chosen b ¼ 0:01 in the test computation reported in this subsection).

Improvement of convexity in AICDM could be performed by computation of a convex hull of the iterate, but we prefer to
apply a numerically simpler procedure. At each grid point in the physical space, we compute the eigenvalues k of the Hessian
of u0 ¼ r�2ðgK � hgKiÞ (they are all real, since the Hessian is a symmetric matrix). If they are all larger than �1, then the
approximate solution given by (7) for the current iterate gK is locally convex at the point under consideration (in this dis-
cussion we assume that, after normalisation, c ¼ 1). Accordingly, if the minimum eigenvalue kmin exceeds �1, no action is



Fig. 4. ru0 for the solution to the test MAE (presented in Section 6.3) on cross sections of the periodicity cell T3ð½0;1	3Þ that are parallel to coordinate planes
and contain pairs of objects: x2 ¼ �1=4 (a), x1 ¼ �1=4 (b), x3 ¼ �1=4 (c). (Due to the symmetry of u0 about each of the three planes, components of gradients
normal to the planes are zero.) The labels xi refer to the Cartesian coordinate axes, parallel to sides of the cross sections. Stars show locations of the three
localised objects (36) on the cross sections. Gray-scaling reflects the masses of the objects (black, gray and white stars: the objects at rðgÞ; g ¼ 1;2;3,
respectively).
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taken. Suppose now the contrary, i.e. kmin < �1. The minimum eigenvalue would become �1, if at this point each second
derivative u0xixi

is increased by �1� kmin, and hence the Laplacian gK ¼ r2u0 is increased by 3ð�1� kminÞ. Following this
observation, at the points where kmin < �1 we increase gK by 6ð�1� kminÞ (by choosing the factor 6 instead of 3 we are ‘‘ove-

rimproving’’ gK ). It is not guaranteed, of course, that jrj2=2þr�2ðg0K � hg0KiÞ is convex for the resultant g0K , since this proce-
dure changes all mixed derivatives at each point and does not guarantee that each second derivative u0xixi

at the points of local
non-convexity is increased by the same amount, or that non-convexity does not appear at new grid points. Hence we pro-
ceed, repeating the procedure till each eigenvalue at each grid point becomes larger than �1� dðgKÞ=2. In our experience,
only a small number of such iterations is necessary to enforce this condition. The quantities 6ð�1� kminÞ are small, being
at most comparable with the global discrepancy dðgKÞ; although the discrepancy dðg0KÞ for the ‘‘improved’’ approximation
g0K can exceed the discrepancy dðgKÞ for the original approximation gK , it thus turns out that the increase (compared to
dðgKÞ) is usually modest.

An approximate solution to the test problem (formulated in Section 6.3), satisfying dðgÞ ¼ 10�10 and d1ðgÞ ¼ 0:41� 10�8,
has been obtained by the AICDM. This has required 2653 evaluations of the determinant of the Hessian. Table 1 illustrates
the deterioration of convergence in this run, as better accuracy numerical solutions are successively found. Note that com-
putational cost of each iteration in improvement of convexity of an approximate solution slightly exceeds that of computa-
tion of the determinant of the Hessian, and each iteration is included into evaluation counts (one evaluation per a convexity
improving iteration) presented in Tables 1 and 2.

In this run, as in runs reported in Section 6.3, the Lebesgue space scalar product (33) has been assumed. We have also
inspected convergence of AICDM employing scalar products
ðu;vÞ ¼
Z

T3
uðxÞvðxÞwðxÞdx;
with weight functions
wðx; qÞ ¼maxð1; ðf̂=hf̂ iÞqÞ; ð38Þ



Fig. 5. Isolines step 0.02 of normal components of ru0 for the solution to the test MAE (dashed lines: negative values, solid lines: zero and positive values)
on Cartesian coordinate planes x2 ¼ 0 (a), x1 ¼ 0 (b), x3 ¼ 0 (c). The labels xi refer to the Cartesian coordinate axes, parallel to sides of the shown cross
sections of the periodicity cell T3ð½0;1	3Þ.

Table 1
Number of evaluations (NE) of the determinant of the Hessian, performed by AICDM in the course of computation of approximate solutions (7) of varying
accuracy to the test MAE with the r.h.s. defined by (22), (23) and (36), discrepancy d1ðgÞ for these solutions, and wallclock duration of runs (DR, seconds) for
computation of approximate solutions to the test MAE by EAICDM.

dðgÞ 10�3 10�4 10�5 10�6 10�7 10�8 10�9 10�10

d1ðgÞ 0:64� 10�2 0:86� 10�3 1:02� 10�3 0:23� 10�4 0:28� 10�5 0:39� 10�6 0:36� 10�7 0:41� 10�8

NE 64 126 251 439 1018 1515 2030 2653
DR 3.38 4.69 11.17 42.7 81 203 435 774

Table 2
Number of evaluations (NE) of the determinant of the Hessian, performed by AICDM with the use of various weight functions (38) in the scalar product (�,�). All
runs are terminated as soon as the accuracy dðgÞ < 10�10 is obtained; dðgÞ ¼ 0:66� 10�10 for q ¼ �1; dðgÞ ¼ 0:95� 10�10 for q ¼ �3=4 and dðgÞ ¼ 1:0� 10�10 in
all remaining cases.

q �1 -3/4 �1/2 �1/4 0 1/4

NE 3169 2619 2465 3743 2653 2571
d1ðgÞ 0.09 � 10�8 0.14 � 10�8 0. 21 � 10�8 0.62 � 10�8 0.41 � 10�8 0. 39 � 10�8

q 1/2 3/4 1 5/4 3/2 7/4 2

NE 2568 2643 2523 2489 2481 2505 2526
d1ðgÞ 0.37 � 10�8 0.39 �10�8 0. 36 � 10�8 0.38 � 10�8 0.39 � 10�8 0. 41 � 10�8 0.37 � 10�8
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(see Table 2). For q > 0, more prominence is given to discrepancy in the regions, where the r.h.s. of the MAE, f̂ , admits rel-
atively high values; for q < 0, the opposite happens, i.e. discrepancy in the regions, where the values of f̂ are relatively low, is
given more weight. Duration of the shortest run, for q ¼ �1=2, with a sequential code on a 3.16 GHz Intel Core Duo processor
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is 25 min 19 s. The computations do not reveal any clear dependence of the efficiency of AICDM on the power q – in a large
interval of q the variation of the number of iterations is just several per cent. The low sensitivity to the value of q > 0 is prob-
ably linked to the relative smallness of the region where f̂ > hf̂ i.

6.5. An enhanced version of AICDM

The efficiency of AICDM can be further improved without employing new mathematical ideas. For instance, we have ex-
plored the possibility of gradual refinement of approximate solutions with increasing spatial resolution. The test problem,
considered in the two previous subsections, was solved with the resolution of ð16MÞ3 Fourier harmonics, where the integer
M is successively increased from 1 to 4. When seeking a solution with the resolution 643 harmonics, which satisfies the accu-
racy requirement dðgÞ < 10�j, the intermediate-stage computations with the resolution of ð16MÞ3 harmonics are terminated
as soon as AICDM finds a solution to the accuracy
dðgÞ < 10�minðj; 2:5MÞ:
We call this algorithm enhanced AICDM, or EAICDM. Durations of runs for integer j P 3 are shown in Table 2 (we do not
present total numbers of evaluations of the determinant of the Hessian in runs by EAICDM, since the times of their compu-
tations vary significantly with the resolution).

A further acceleration is likely to be achieved by avoiding dealiasing, but we did not explore this possibility.
7. Concluding remarks

We have presented new forms of the Monge–Ampère equation in RN: the second-order divergence (4), Fourier integral
(11) and convolution (21) forms. They have been derived under the assumption that the MAE (1) has a r.h.s. with a non-van-
ishing spatial mean, and hence (1) admits solutions (7). The first form gives an opportunity to relax the regularity require-
ments for weak solutions to the MAE, such that the integral in the l.h.s. of the identity (5) is well-defined. The third form is an
integro-differential equation of the first order, which might be useful for development of an algorithm for computation of a
solution (7) using transformations of spatial variables. This paper is mostly concerned with the Fourier integral form of the
MAE used to prove existence of a small-amplitude solution of the form (7) for a weakly varying r.h.s. in (1) and to formulate
an algorithm for computation of a solution (7) to (1) in an odd-dimensional space. In a test application to a three-dimen-
sional MAE with the r.h.s. reminiscent of mass transportation problems considered in cosmology, we have demonstrated that
a solution to the MAE with a smooth positive r.h.s. can be efficiently obtained by two versions of this algorithm, ACPDM (the
algorithm with continuation in a parameter and discrepancy minimisation) and AICDM (the algorithm with improvement of
convexity and discrepancy minimisation). While the latter is suitable for computation of a convex solution for an everywhere
positive r.h.s. f, the former requires only hf i – 0. However, modification of ACPDM for the case of a zero-mean space-periodic
r.h.s. is straightforward.

There are some analogies between our method and the inexact Newton–Krylov solver with preconditioning, used in Delz-
anno et al. [21]. In our algorithms, solving (27) or (32), where the easily invertible polynomial part of the MAE is separated
out, can be regarded as preconditioning; we believe that it is optimal. Indeed, its design is based on the algebraic nature of
the MAE and primarily on the positivity and bounds of the kernels in the Fourier integral form, a very special – and so far not
reported – property of the MAE. Furthermore, our algorithms are of the Krylov type. However, we do not rely on Newton
iterations: instead of solving a succession of Newton problems, each with a complexity comparable to that of the MAE,
we tackle the MAE directly.

In this paper, space periodicity and Fourier decompositions play an important rôle in two respects: First, we rely on the
Fourier methods to find the optimal coefficients (28) in the equations (27) or (32). Note that space periodicity is not required
for the derivations – we consider Fourier integrals, and not Fourier sums, and the algorithms do not require computation of
these integrals. Second, our algorithms are realised in the spectral form, because we seek space-periodic solutions. In a peri-
odicity domain the required computations of the inverse Laplacian, as well as numerical differentiation become trivial, when
spectral methods are applied. Recall that Fourier methods have also the advantage of being more accurate: when the reso-
lution is increased, Fourier series converge to a solution together with all the derivatives that the solution possesses, whilst
finite differences do not approximate derivatives beyond their fixed order. We would also use the spectral approach, for in-
stance, to solve numerically Dirichlet or Neumann boundary value problems for u0 (see (7)) in a rectangular box.

However, the geometry of the domain, where the solution is sought, may prohibit the use of spectral methods. What hap-
pens when the MAE must be solved for more complicated boundary conditions in regions whose geometry is not rectangular
(parallelepiped-shaped)? Our algorithms do not inherently rely on spectral methods and will remain applicable. Since we are
solving the MAE in terms of the Laplacian of the unknown function, we would have to invert the Laplacian with suitable reg-
ular boundary conditions. Finite differences can be applied in conjunction with our method to carry out this task and for
computation of derivatives involved in the function F appearing in the r.h.s. of (32). Key equations for our algorithms,
(27) and (32), are formulated in the physical space and can be used in conjunction with our method for a variety of boundary
conditions. Their convergence properties remain of course to be investigated – for instance, whether the theoretically pre-
dicted values (28) will still be the optimal choice for the coefficients of the polynomial in the l.h.s. of (32).
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An attractive feature of our algorithm is its simplicity: our Fortran-95 source code realising EAICDM is below 18 KB (672
lines long, not including the source for the Fast Fourier Transform).

Hereafter we list some open questions. Under which conditions does the generalised MAE
ð1� pÞ
XN

m¼0

amgm þ p det kr�2gxixj
þ dijk ¼ f=hf i ð39Þ
with the coefficients (28), which is solved for a set of p by ACPDM, possess zero-mean space-periodic solutions for all
0 < p < 1? Does its discretisation always have a solution, as long as the generalised MAE itself does? Does the solution of
(39) depend analytically on the parameter p, and hence polynomial extrapolation for p ¼ 1, that we employ, is mathemat-
ically sensible, or should another asymptotics near p ¼ 1 be assumed? What is the optimal choice of the sequence of values
of p to be used by ACPDM? Which scalar product is optimal for acceleration of convergence of stabilised iterations? Can
Chebyshev techniques [32] be used to improve efficiency of the iterative processes?

Additional questions emerging outside the main topic of this paper – numerical methods for solution of the MAE – also
cannot be avoided, since any information concerning the structure of solutions to Monge–Ampère problems of the cosmo-
logical type with a high-contrast r.h.s., formulated in Section 5, can be incorporated into specialised solvers in order to im-
prove their performance (like it has proved possible to accelerate computations about 4 times just by taking into account in
AICDM convexity of solutions to the MAE with a positive r.h.s.). The questions are: What is the asymptotics of solutions in
the small parameter d determining the width of the localised objects? Figs. 4 and 5 show that the space is divided into re-
gions of dominant influence of each object. Also, notable are almost axisymmetric structures in the Laplacian of the solution
around the lines connecting centres of objects, seen on Fig. 3. Can these geometric features be identified by performing the
asymptotic analysis of the problem? How does the contrast number measure numerical complexity of the MAE and, in par-
ticular, the condition number of the linearisation near the solution (for a given spatial discretisation)?
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